Interference of Nitrite in the Iodometric Determination of Sulfite

ROBERT B. LEW

Received for publication January 28, 1975

Introduction

Beet sugar technologists normally employ sulfur dioxide to control color formation in process juices. Sulfitation also reduces alkalinity and improves the boiling properties of the thin juice. Sulfur dioxide when added to thin juice reacts with the excess alkali and produces sulfite ion. The latter is easily oxidized by oxygen of the air to sulfate. Thus, it becomes desirable to determine the amount of sulfite remaining in the thin juice after sulfitation. Quantitation of sulfite is ascertained by direct titration either with iodine or with potassium iodate solution using starch as an indicator. In many instances factory analysts have experienced an abnormal end point and, on occasion, sample solutions have turned dark blue on addition of deKonich starch solution or potassium iodide. Subsequent investigation showed that this phenomenon was caused by the presence of nitrite ion in the process juices.

This paper presents an indirect titration procedure with potassium iodate for the determination of sulfite in the presence of nitrite. The proposed method includes reaction of nitrite with hydrazine sulfate, addition of sample to excess iodine, and back titration with sodium thiosulfate solution.

Experimental Procedure

Reagents

All chemicals used are of reagent grade.

Standard Potassium Iodate Solution, 0.0200 N. Dissolve 0.7133 g of dry, primary standard grade, KI03 with deionized water and dilute to one liter.

Sodium Thiosulfate Solution, 0.02 N. Dissolve 5 g of Na2S2O3·5 H2O plus 0.1 g of Na2CO3 with one liter of freshly boiled and cooled distilled water. Allow the solution to stand for a day before standardizing.

Starch Indicator Solution, 0.2%(W/V).

Determination of Sulfite in Process Juice Containing Nitrite

Transfer about 200 ml of cooled process juice into a 250-ml Erlen-
meyer flask. While the sample is being stirred, add 0.2 g of
$\text{N}_2\text{H}_4\cdot\text{H}_2\text{SO}_4$ and follow by 1 ml of concentrated HCl.

Pipet 10 ml of 0.0200 N KIO$_3$ solution into a 250-ml Erlenmeyer
flask. Add 20 ml of distilled water, 1 g of KI and 10 ml of 6N
HCl. With constant stirring, pipet 50 ml of the hydrazine-treated
sample into the flask. Quickly titrate with sodium thiosulfate
solution until the brown color of the iodine turns to yellow.
Add 2 ml of starch indicator solution and titrate to the dis­
appearance of the blue color.

The sodium thiosulfate solution is standardized with KIO$_3$ solu­
tion using the aforementioned procedure by replacing the
sample with 50 ml of distilled water.

Discussion

Interference of Nitrite

Fresh sugar beets usually contain no measurable amounts of nitrite.
The presence of nitrite in thin juice is attributed to bacterial
reduction of nitrate in the beet end of the factory (4).2

Nitrite in an acidic medium, even in trace quantity, reacts with
iodide producing nitric oxide, iodine, and water (5).

$$2\text{NO}_2^- + 2\text{I}^- + 4\text{H}^+ = 2\text{NO} + \text{I}_2 + 2\text{H}_2\text{O}$$

The resulting nitric oxide forms higher oxides of nitrogen by re­
action with oxygen of the air, and these oxides then react with
iodide producing more iodine and nitric oxide. The cycle re­
peats itself indefinitely. Consequently, iodine originating from
the nitrite-iodide reaction interferes in the iodometric titration
of sulfite.

The data in Table 1 demonstrate that a very small amount of nitrite
will interfere in the iodometric determination of sulfite. Reaction be­
tween nitrite and iodide is practically instantaneous in acidified sugar
solution. In the absence of acid no reaction was detected for at least one
hour. Also, oxygen of the air slowly oxidizes iodide in acidified sugar
solution. Since a titration normally requires 2-3 minutes, oxidation of
iodide by oxygen of the air should offer no serious problem. Such an
error is relatively constant and can be evaluated with a blank deter­
mination.

Table 1.—Reaction between nitrite and iodide in a 14% sugar solution.

<table>
<thead>
<tr>
<th>[NO$_2$]</th>
<th>[I$^-$]</th>
<th>[H$^+$]</th>
<th>Color of Sugar Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4×10^{-6} M</td>
<td>1.2×10^{-2} M</td>
<td>0</td>
<td>Remained colorless for 1 hr.</td>
</tr>
<tr>
<td>8.7×10^{-6}</td>
<td>1.2×10^{-2}</td>
<td>0</td>
<td>Remained colorless for 1 hr.</td>
</tr>
<tr>
<td>0</td>
<td>1.2×10^{-2}</td>
<td>0.6 M</td>
<td>Turned blue in 4 min.</td>
</tr>
<tr>
<td>4.4×10^{-6}</td>
<td>1.2×10^{-2}</td>
<td>0.6</td>
<td>Turned blue in ca. 1 sec.</td>
</tr>
<tr>
<td>8.7×10^{-6}</td>
<td>1.2×10^{-2}</td>
<td>0.6</td>
<td>Turned blue in ca. 1 sec.</td>
</tr>
</tbody>
</table>

Numbers in parentheses refer to literature cited.
The data appearing in Table 2 were obtained by indirect titration with potassium iodate. The percent recovery of sodium sulfite decreased with increasing amounts of nitrite.

Table 2.—Magnitudes of nitrite interference.

<table>
<thead>
<tr>
<th>NO₂ Added (µg)</th>
<th>Na₂SO₃ Taken (mg)</th>
<th>Na₂SO₃ Recovered (mg)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.7</td>
<td>16.6</td>
<td>99</td>
</tr>
<tr>
<td>100</td>
<td>17.4</td>
<td>16.2</td>
<td>93</td>
</tr>
<tr>
<td>200</td>
<td>18.2</td>
<td>15.7</td>
<td>86</td>
</tr>
<tr>
<td>500</td>
<td>17.8</td>
<td>11.7</td>
<td>66</td>
</tr>
<tr>
<td>1000</td>
<td>16.3</td>
<td>7.9</td>
<td>48</td>
</tr>
</tbody>
</table>

Elimination of Nitrite with Hydrazine Sulfate

In aqueous solution, hydrazine is both an oxidizing and a reducing agent. Hydrazine reacts quantitatively with nitrite in acid medium (1, 6). Oxidation of hydrazine ordinarily yields nitrogen as a product.

Employment of iodine for the direct titration of hydrazine has been documented (2). The pH is maintained between 7.0 and 7.4 with sodium bicarbonate during the titration. At a pH lower than 7, the reaction is very slow.

$$N₂H₄ + 2 I₂ = 4 HI + N₂$$

Hydrazine should react rapidly with nitrite ion in acid solution, but possibly, the reaction between hydrazine and iodine is sufficiently slow that iodine solution may still be used for the titration of sulfite.

Experiments with 50 to 150 mg of hydrazine sulfate in different concentrations of hydrochloric acid indicated that no detectable reaction occurred between hydrazine and iodine when the concentration of the acid was 0.3 to 0.6 N. When the solution was adjusted to 0.15 N HCl, a very small quantity of iodine, 0.6% of the total amount used, was reduced by hydrazine. Thus, all subsequent titrations were performed in 0.6 N HCl. Solution of hydrochloric acid greater than 0.6 was not investigated.

Determination of Sulfite

Preliminary studies on recovery of sulfite by direct titration of reagent grade sodium sulfite with iodine yielded results ranging from 90 to 96% recovery. The error was mostly due to air oxidation of the sulfite during the titration. This problem was satisfactorily circumvented by adding the sodium sulfite to an excess iodine solution and back titrating the remaining iodine with sodium thiosulfate solution.

Potassium iodate reacts with excess iodide and acid producing an equivalent amount of iodine. The resulting iodine can then be used to oxidize sulfite. The advantages of employing potassium iodate for
the source of iodine are: (a) potassium iodate is commercially available in a high state of purity and this salt can be used for the direct preparation of standard solution, and (b) dilute iodate solution is more stable than dilute iodine solution.

The accuracy of the described method for the determination of sulfite in the presence of nitrite was established by analyzing small portions of reagent grade sodium sulfite. The sodium sulfite had an assay value of 99.6% and was used without further purification. The results are presented in Table 3.

Table 3.—Determination of sulfite in the presence of 1000 μg of nitrite using the described method.

<table>
<thead>
<tr>
<th>Na₂H₄·H₂SO₄ (mg)</th>
<th>Na₂SO₃ Taken (mg)</th>
<th>Na₂SO₃ Recovered (mg)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>19.5</td>
<td>19.4</td>
<td>99.5</td>
</tr>
<tr>
<td>50</td>
<td>18.6</td>
<td>18.5</td>
<td>99.5</td>
</tr>
<tr>
<td>30</td>
<td>19.0</td>
<td>19.0</td>
<td>100.0</td>
</tr>
<tr>
<td>50</td>
<td>18.5</td>
<td>18.6</td>
<td>100.5</td>
</tr>
<tr>
<td>50</td>
<td>18.9</td>
<td>18.9</td>
<td>100.0</td>
</tr>
</tbody>
</table>

To evaluate the accuracy of the described method for the determination of sulfite in thin juice, known amounts of sodium sulfite were added to five separate portions of thin juice. Determinations of sulfite in the original thin juice and samples with added sodium sulfite were made. Each milliliter of the original thin juice contained 66.4 μg of sulfite and 4.9 μg of nitrite. The nitrite content was ascertained using a photometric method described by Buckett et al. The results are summarized in Table 4.

Table 4.—Recovery of sodium sulfite added to 50 ml of thin juice using the described method.

<table>
<thead>
<tr>
<th>Na₂SO₃ Added (mg)</th>
<th>Na₂SO₃ Recovered (mg)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3</td>
<td>17.1</td>
<td>98.8</td>
</tr>
<tr>
<td>20.1</td>
<td>20.0</td>
<td>99.5</td>
</tr>
<tr>
<td>19.3</td>
<td>19.2</td>
<td>99.5</td>
</tr>
<tr>
<td>18.6</td>
<td>18.3</td>
<td>98.4</td>
</tr>
<tr>
<td>18.3</td>
<td>18.2</td>
<td>99.4</td>
</tr>
</tbody>
</table>

The data in Table 3 and 4 demonstrate that the described method is applicable for the determination of sulfite in the presence of nitrite. Interference of nitrite was eliminated with the use of hydrazine sulfate.

Samples of process thin juice containing various quantities of nitrite were analyzed for sulfite by two different methods. Results are
Table 5.—Determination of sulfite in thin juice containing nitrite.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>NO₂⁻ µg/ml</th>
<th>Direct Titration with KIO₃ Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>7.0</td>
<td>457</td>
</tr>
<tr>
<td>4</td>
<td>4.9</td>
<td>250</td>
</tr>
</tbody>
</table>

shown in Table 5. As expected, direct titration with potassium iodate solution gave considerably lower sulfite content as compared to that ascertained by the proposed method. In cases where the nitrite concentration is abnormally high, titration of sulfite with iodate without elimination of nitrite is not possible.

Summary

Nitrite in acid medium, even in trace quantity, reacts with iodide producing nitric oxide, iodine, and water. The resulting nitric oxide combines with the oxygen in the air forming oxides of nitrogen. The latter dissolves in water and produces more nitrite. This reaction is cyclic and continues indefinitely. Iodine originating from the nitrite-iodine reaction interferes in the iodometric titration of sulfite.

A method for the determination of sulfite in thin juice that contains nitrite has been developed. The method is based on elimination of nitrite in the thin juice with hydrazine sulfate, addition of sample to excess iodine, and back titration with sodium thiosulfate solution.

Literature Cited