Ion Exchange Decolorization Applications Using Fractal Shallow Bed Equipment

V. Kochergin, W. Jacob, S. Brandon, K. Vinecke, T. Pryor

Amalgamated Research LLC

Presented at the 38th Biennial ASSBT Meeting
Clearwater Beach, FL
February 26, 2015
Applicability of Available Information And Challenges For Beet Sugar Applications

• Most information is about low color (less than a 1000 IU) cane syrups
• Resin bed depth – 6-13 feet (flowrates, pressure drop issues)
• Irreversible fouling with high MW colorants (the composition is different for beet extract / thick juice)
• Amount of regenerant waste is proportional to color removal (high color syrups will generate larger amount of waste - needs to be addressed)
• Different pH, Brix, etc.

Old style equipment is expensive, new approaches required
Group Consortium Trials

- Amalgamated Sugar
- American Crystal
- Michigan Sugar
- Rogers Sugar
Pilot Equipment
Effect of Brix on Decolorization

(30 and 70 BX extract, 16 Bx Thin Juice - 3 ft resin bed)
Study Highlights

• Decolorization can be accomplished in relatively short beds that minimizes the capital investment.
• Decolorization on dilute juices is more efficient. Additionally, the overall resin loading is higher due to accessibility of resin active sites.
• As a result, the amount of regenerant can be reduced. Regenerant use can be optimized by partial recycle and nanofiltration.
• Regeneration can be accomplished at higher flowrates.
• Fractal Shallow Bed equipment design allow to bring both capital and operating cost to a reasonable level.
Escon / ARi Fractal Shallow Bed Softener Installation In a European Sugar Plant
Two Consecutive White Boilings in the Beet Sugar Industry

Underlying Concept - Reduce Negative Impact of Recycles
Reasons for Recycle

• Higher product recovery
• Improved quality of the product,
• Minimized environmental impact through the reduction waste streams
• Improved heat recovery
• Etc.
Effect of Recycle on Sugar Inventory

100 150

50

100 120 100

20

Recycles Require Larger Equipment
Sugars™ Estimates for Two White Boilings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Existing</th>
<th>White Two White Products</th>
<th>Existing</th>
<th>High Raw Two White Products</th>
<th>Existing</th>
<th>Low Raw Two White Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/Cuite Flow (cu. ft./hr)</td>
<td></td>
<td>2,286</td>
<td>1,672</td>
<td>1,089</td>
<td>785</td>
<td>462</td>
</tr>
<tr>
<td>% Sugar Recycle</td>
<td></td>
<td>42.1</td>
<td>18.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar Color (ICUMSA)</td>
<td>23</td>
<td>17</td>
<td>2855</td>
<td>34</td>
<td>7444</td>
<td>3817</td>
</tr>
<tr>
<td>Pan Purity (%Sug/DS)</td>
<td>94.0</td>
<td>93.1</td>
<td>87.7</td>
<td>85.4</td>
<td></td>
<td>76.3</td>
</tr>
<tr>
<td>Molasses Purity (%Sug/DS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59.1</td>
</tr>
<tr>
<td>Steam Flow (lb/hr)</td>
<td>50,305</td>
<td>52,843</td>
<td>20,786</td>
<td>10,145</td>
<td>6,789</td>
<td>5,869</td>
</tr>
<tr>
<td>Molasses Color (ICUMSA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43,778</td>
</tr>
</tbody>
</table>
Estimated Percent Reduction

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total massecuite Flow</td>
<td>24</td>
</tr>
<tr>
<td>Percent of Sugar Recycle</td>
<td>57</td>
</tr>
<tr>
<td>Exhaust steam usage</td>
<td>12</td>
</tr>
<tr>
<td>Molasses color</td>
<td>49</td>
</tr>
<tr>
<td>Flowrate, BV/hr</td>
<td>Bed length, Ft.</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>36</td>
<td>3</td>
</tr>
</tbody>
</table>
Remaining Questions for Large Scale Trials

- Ash content and crystal size in the second boiling
- Variability of thin juice color during the crop
- New purity profile with two white products
- Utilization of continuous machines be used after the second boiling (crystal uniformity)
- Longer term resin studies (regenerations efficiency and sustainability, etc.)
Conclusions

• Decolorization with Fractal Shallow Bed Approach makes projects more attractive due to lower capital and operating cost

• Use of innovative technologies and approaches is required to support the new vision
Acknowledgements

• Robert Howe and his team- British Sugar plc

• Amalgamated Sugar LLC Nampa factory team